dots bg

Advance Data Science with BFSI

Course Instructor Abhishek Gupta

₹145000.00

To enroll in this course, please contact the Admin
dots bg

Course Overview

Schedule of Classes

Course Curriculum

2 Subjects

Advance Data Science with BFSI

341 Learning Materials

Python by Instructor 1

1. Induction_class | 21st February 2022 | Monday | 8am to 10am IST

Video
3:01

2. Git & Github | 22nd February 2022 | Tuesday | 8am to 10am IST

Video
2:21:19

3. git class | 23rd February 2022 | Wednesday | 8am to 10am IST

Video
2:13:21

4. Introduction of Python | 24th February 2022 | Thursday | 8am to 10am IST

Video
2:8:38

5. Python Introduction Part 2 | 25th February 2022 | Friday | 8am to 10am IST

Video
2:9:59

6. Memory Management | 1st March 2022 | Tuesday | 8am to 10am IST

Video
2:9:59

7. Python Components | 2nd March 2022 | Wednesday | 8am to 10am IST

Video
2:11:8

8. Operators In Python | 3rd March 2022 | Thursday | 8am to 10am IST

Video
2:21:34

9. Extra_Class | 5th March 2022 | Saturday | 9am to 11am IST

Video
2:22:00

10. String_string_method | 8th March 2022 | Tuesday | 8am to 10am IST

Video
2:11:57

11. String_Methods_conditional_statement | 9th March 2022 | Wednesday | 8am to 10am IST

Video
2:16:54

12. Loops in Python | 10th March 2022 | Thursday | 8am to 10am IST

Video
2:3:14

13. Loop_Practice_List | 11th March 2022 | Friday | 8am to 10am IST

Video
1:44:44

14. List_Method | 14th March 2022 | Monday | 8am to 10am IST

Video
2:26:00

15. Tuple Tuple Method Dictionary | 16th March 2022 | Wednesday | 8am to 10am IST

Video
2:3:47

16. Dictionary Methods Sets | 17th March 2022 | Thursday | 8am to 10am IST

Video
1:57:39

17. Assignment_Revision | 20th March 2022 | Sunday | 9am to 11am IST

Video
1:53:25

18. Set Frozen | 21st March 20222 | Monday | 8am to 10am IST

Video
1:30:35

19. Function in Python | 22nd March 2022| Tuesday | 8am to 10am IST

Video
1:33:18

20. Lambda Function | 23rd March 2022 | Wednesday | 8am to 10am IST

Video
1:25:25

21. Lambda Arguments | 24th March 2022 | Thursday | 8am to 10am IST

Video
2:9:26

22. Recursion Iterator | 28th March 2022 | Monday | 8am to 10am IST

Video
1:40:46

23. File Handling | 29th March 2022 | Tuesday | 8am to 10am IST

Video
2:01

24. Exception Handling Regex | 31st March 2022 | Thursday | 8am to 10am IST

Video
1:52:4

25. Regex | 1st April 2022 | Friday | 8am to 10am IST

Video
1:37:44

26. Numpy Introduction | 4th April 2022 | Monday | 8am to 10am IST

Video
1:53:40

27. Numpy Part -2 | 5th April 2022 | Tuesday | 8am to 10am IST

Video
1:20:28

28. Numpy Part-3 | 7th April 2022 | Thursday | 8am to 10am IST

Video
2:042

29. Pandas | 11th April 2022 | Monday | 8am to 10am IST

Video
1:54:40

30. Pandas Part-1 | 12th April 2022 | Tuesday | 8am to 10am IST

Video
1:18:47

31. Pandas Part-2 | 14th April 2022 | Thursday | 8am to 10am IST

Video
1:48:29

32. Matplotlib | 19th April 2022 | Tuesday | 8 am to 10 am IST

Video
1:48:32

33. Matplotlib Part-2 |20th April 2022 | Wednesday | 8 am to 10 am IST

Video
41:4

Python by Instructor 2

1. Git & GitHub

Video
1:26:6

2. GitHub

Video
1:53:8

Git part-2

Video
1:43:21

Jupiter Intro

Video
1:56:45

Interger Data Types

Video
1:33:36

6. Integer Operator

Video
2:10:45

7.

Video
1:51:32

8. String_Part_2

Video
1:51:32

9. String_Part_3

Video
2:3:21

10. List_Part_2_Tuple_Dic_Intro

Video
1:42:18

11. List_Comprehension_Tuple_Dic

Video
1:58:47

12. Tuple_Dictionary_Part_1

Video
2:13:25

13. Dic_Part_2

Video
1:41:53

14. Conditional Statement

Video
1:21:16

15. Loops

Video
1:58:57

16. Functions

Video
2:34:36

17. Functions_Part_2_Map_reduce_iterator

Video
2:03

18. Global_Local_Variable_enumarate_Iterator_Module

Video
1:55:17

19. File_Handling

Video
1:23:2

20. Exceptional Handling

Video
2:4:12

22. Regex_Part_2

Video
1:44:22

23. Regex_part_3

Video
1:45:27

24. Numpy_Part_1

Video
1:50:38

22. Regex part 1

Video
1:21:20

25. Numpy_Part_2

Video
1:47:18

26. Pandas_Part_1

Video
2:4:3

27. Pandas_Part_2

Video
1:59:13

28. Pandas_Part_3_Matplotlib

Video
1:51:10

29. Matplotlib

Video
1:51:17

30. Seaborn

Video
1:31:13

Python by Instructor 3

1. Git_Hub

Video
2:57:55

2. Git_&_GitHub

Video
2:51:18

3. Operating System

Video
3:021

4. Python_Intro

Video
2:38:54

5. Components in Python

Video
2:45:34

6. Datatypes in Python

Video
2:39:29

7. Operators_in_Python

Video
2:33:11

9. Conditional & Control Statement

Video
2:29:58

8. Operators_part_2 |

Video
2:46:21

10. Conditional & Control Statement

Video
1:56:19

11. Strings

Video
2:45:43

13. List in Python

Video
2:25:13

14. Dictionary in Python

Video
2:29:00

15. Functions_in_Python

Video
2:25:3

16. Functions_in_Python_2

Video
2:18:21

17. Models_in_Python

Video
2:29:49

18. Files in Python - 2

Video
2:20:6

19. Exception_Handling

Video
2:29:13

20. Regular Expression in Python

Video
2:22:17

21. Numpy_Part_1

Video
2:25:36

22. Numpy_2

Video
2:26:52

23. Pandas_Part_1

Video
2:20:24

Pandas_Part_2

Video
2:47:53

Matplotlib_2

Video
2:8:6

Seaborn

Video
3:6:20

Case Study

Video
2:15:42

Statistics & Machine Learning Instructor 1

1. What is Statistics?

Video
2:1:41

2. Descriptive Statistics

Video
2:9:48

3. Variance

Video
2:4:51

4. Z-Score Method

Video
2:8:48

5. Sampling Techniques

Video
2:11:19

6. Probability

Video
2:12:9

7. Bayes Theorem

Video
2:14:29

8. Normal Distribution - Central Limit Theorem

Video
1:41:19

9. Hypothesis

Video
1:51:4

10. T-Test

Video
2:4:25

11. ANOVA

Video
2:5:26

12. Stats Hands On

Video
2:16:14

13. Linear Algebra

Video
2:16:00

14. Machine Learning

Video
2:040

15. Preprocessing

Video
2:04

16. Linear Regression

Video
1:50:9

17. Adjusted R2

Video
2:9:4

18. Logistic Regression

Video
2:5:7

19. Logistic Regression

Video
2:8:26

20. Decision Tree

Video
1:59:14

21. Random Forest

Video
2:24:14

22. K- Nearest Neighbours

Video
2:17:34

23. Naive Bayes

Video
1:49:58

24. Principal Components Analysis

Video
1:5:33

25. SVM

Video
1:36:38

Statistics & Machine Learning Instructor 2

1. Box and Whisker Plots

Video
1:57:13

2. Descriptive Statistics

Video
2:5:25

3. Correlation & Regression

Video
1:59:00

4. Sampling Methods

Video
1:55:27

5. T - Distribution

Video
2:8:50

6. Hypothesis

Video
1:45:25

7. ANOVA- Analysis of Variance

Video
2:10:27

8. Introduction to Probability Deduction

Video
2:1:32

9. Probability Distribution

Video
1:52:6

10. Classification Tree

Video
2:5:10

11. Decision Tree code to built CART Tree

Video
3:53:56

12. Random forest

Video
1:44:16

13. Regression : Predicting House

Video
1:31:37

14. Clustering

Video
1:54:30

15. Support Vector Machines

Video
1:39:20

16. Logistic Regression

Video
1:44:26

17. Nearest Neighbor Classification

Video
1:28:37

18. Bayes Classification

Video
1:21:59

19. Similarity : Retrieving Documents

Video
1:21:11

20. Artificial Neural Network

Video
1:23:22

Statistics & Machine Learning Instructor 3

1. Statistics_Intro

Video
1:30:55

2. Descriptive Statistics

Video
2:52:36

3. Probability

Video
1:55:9

4. Python Naive Bayes

Video
2:40:41

5. Bayes Theorem

Video
2:44:12

6. Probability_Distribution

Video
2:50:10

7. Correlation

Video
2:41:40

8. Interval Estimation

Video
3:3:6

9. Null & Alternative Hypothesis

Video
2:56:18

10. T-Test

Video
2:42:50

11. Machine Learning

Video
2:41:36

12. LR_with_Numpy

Video
2:21:33

13. LR_with_Diabetes_Data

Video
2:58:35

14. Skewness & Kurtosis

Video
2:51:25

15. Machine Learning

Video
2:47:29

16. Preprocessing

Video
2:48:41

17. SVM

Video
2:48:13

18. Clustering Techniques

Video
2:19:18

19. Model Selection & Evaluation

Video
2:46:12

20. Model Selection & Evaluation_2

Video
1:40:8

SQL

SQL Intro

Video
1:54:30

Normilization

Video
1:48:14

Joins

Video
1:40:41

SQL Views

Video
1:48:50

User Defined Functions

Video
1:40:1

Stored Procedures

Video
2:1:21

MongoDB Intro

Video
2:9:39

What is MongoDB

Video
1:29:18

MongoDB CRUD Operations

Video
1:47:32

Indexing

Video
1:46:49

MongoDB Drivers

Video
1:49:10

Sharding MongoDB

Video
1:34:19

Tableau

Tableau Intro

Video
1:54:41

Adding Parameters

Video
1:59:13

Manipulating Graph Size

Video
1:50:52

Funnel Chart

Video
1:48:51

Actions

Video
1:45:2

Viz Animations

Video
1:52:43

Dashboard Actions

Video
1:50:58

Connecting to SQL Server

Video
1:42:47

PowerBi

Slicers in PowerBi

Video
1:46:16

Data Modelling in PowerBi

Video
1:38:29

PowerBi Intro

Video
1:46:46

Tabular data in PowerBi

Video
47:42

Stacked Area Chart in PowerBi

Video
1:44:52

Creating Report in PowerBi

Video
1:49:14

Power Query

Video
1:55:48

Merging Sheets in Power Query

Video
1:55:8

Mackaroo - Random Data Generator

Video
1:10:3

R-Programming

R CLass_Intro

Video
3:26:34

Vector, List, Factor, Conditional Statement

Video
3:16:34

Matrix & Dataframes

Video
3:15:40

Imputing NA Values

Video
3:2:11

Timeseries

Time Series Analytics & Forecasting

Video
1:55:44

Additive Method

Video
1:56:59

End to End Project-Time Series Forecasting

Video
1:53:39

Time Series Class 4 | 27th March 2023 | Monday | 8am to 10am IST

Video
1:48:3

Time Series Class-5 | 28th March 2023 | Tuesday | 8am to 10am IST

Video
1:52:21

MongoDB

MongoDB_Intro

Video
2:57:40

Arrays with MongoDB

Video
3:042

MongoDB Structure

Video
2:57:54

Bigdata

BigData_Intro

Video
3:3:52

Hadoop

Video
3:1:36

Map Reduce

Video
2:51:37

Limitation of Map Reduce

Video
3:8:53

Deployment by Instructor 1

Deployment_Intro

Video
2:055

Deployment of ML Model

Video
1:55:52

Flask

Video
2:2:28

Flask_2

Video
2:2:10

AWS Management

Video
1:19:24

Deployment by Instructor 2

Introduction to Deployment

Video
1:55:27

Model Scoring

Video
1:46:10

Flask

Video
1:55:42

DL & NLP Instructor-1

Deep Learning Intro

Video
1:47:53

History of Neural network &DL

Video
2:15:18

Notation

Video
2:11:21

Back Propogation Algorithm

Video
2:9:42

Vanishing Gradient Problem

Video
2:1:6

Weight Initialization

Video
2:9:20

DNN

Video
1:43:53

Feature Scaling

Video
2:5:10

Batch Normailzation

Video
1:39:32

Optimizer

Video
2:6:33

Nesterov Accelerated Gradient

Video
1:41:42

Optimization Method

Video
2:5:27

Hyper Parameter

Video
2:044

CNN

Video
1:58:57

Regression & Classification

Video
2:6:26

Data Augmentation

Video
2:1:19

CNN vs ANN

Video
1:57:5

Lenet 5 Architecture

Video
1:54:57

Case Study

Video
1:45:33

Transfer Learning

Video
2:3:41

Introduction to NLP

Video
2:2:2

NLP Foundation

Video
1:57:4

Stemming

Video
2:1:31

N-Grams

Video
1:37:16

Project - Spam Message Classification

Video
1:38:54

Extract Text

Video
1:35:29

Word2vec

Video
1:31:18

Advanced Ai

1. Introduction to Deep Learning

Video
1:15:25

2. Machine Learning

Video
1:51:32

3. Regression

Video
1:49:9

4. Artificial Neural Networks

Video
1:56:22

5. Artificial Neural Network_Computer Graphics

Video
1:54:41

6. Backpropagation

Video
2:011

7. Tensorflow_2

Video
1:34:17

8. Keras Simplified

Video
1:55:7

9. Keras_Simplified

Video
1:33:34

10. Convolutional Neural Networks

Video
1:21:33

11. Convolution

Video
1:41:7

12. Convolutional Neural Network

Video
1:47:31

13. CNN Assignment

Video
1:41:21

14. Sequence

Video
1:34:28

15. RNN

Video
1:34:28

16. Auto encoders

Video
1:54:4

17. Intro to Autoencoders

Video
1:43:27

18. Pytorch

Video
1:42:41

19. Traffic sign recognition

Video
1:31:45

20. Logistic Regression

Video
1:58:42

21. Adaptive Gradient

Video
1:41:34

22. Transfer Learning

Video
1:48:8

NLP by Instructor 1

NLP

Video
1:57:49

Text Preprocessing

Video
1:53:2

Word Embeddings

Video
1:32:27

Naive Bayes

Video
2:037

Similariry in Text

Video
1:57:9

Information Retrieval

Video
1:55:35

Spacy

Video
1:19:28

Advanced Excel Course

Class_01

Video
2:5:13

Class_02

Video
2:7:12

Class_03

Video
2:6:50

Class_04

Video
2:1:15

Class_05

Video
2:3:50

Class_06

Video
2:4:30

Class_07

Video
2:9:46

Class_08

Video
2:8:19

Class_09

Video
2:7:51

Class_10

Video
2:1:34

Class_11

Video
2:6:15

Class_12

Video
2:4:35

Class_13

Video
1:50:20

Class_14

Video
1:43:33

Computer Vision

1. Computer_Vision_Intro

Video
1:25:44

2. Edge_Detection

Video
1:27:27

3. Moving_Average

Video
1:44:15

4. Dog_breed_identification_Solution

Video
1:45:23

5. Gaussian_Blur

Video
1:46:48

6. Object_Detection

Video
1:27:29

7. Image_Segmentation

Video
1:41:52

8. Object_Detection_Inference

Video
1:50:39

9. Dataset

Video
1:34:4

Advanced NLP

1. Natural_Language_Pre - Processing

Video
1:19:17

2. Word_Embeddings

Video
1:43:11

3. Word_Embeddings_2

Video
1:37:59

4. Word_Embeddings_Using_Deep_Learning

Video
1:35:2

5. Intro_to_Autoencoders

Video
1:33:30

6. Word Embeddings using Deep Learning

Video
1:23:11

7. Attention_Mechanism

Video
1:27:43

8. Tensor_2_Tensor_Intro

Video
1:41:1

9. Tensorflow_Transformer_en_Spanish

Video
1:34:4

10. BERT_for_Sentiment_Analysis

Video
1:38:7

11. Similarity

Video
1:48:18

12. String Similarity

Video
1:31:17

13. Huggingface_Pytorch_Transformers

Video
1:45:23

14. Summarization using Spacy

Video
1:39:47

15. Web_Scraping

Video
1:12:18

Domain Specialization

E-Commerce_Day-1

Video
2:2:21

E-Commerce_Day-2

Video
2:5:23

E-Commerce_Day-3

Video
2:6:35

Banking Domain Day-1

Video
1:34:44

Banking Domain_Day-2

Video
1:44:32

Banking Domain_Day-3

Video
1:29:17

Banking Domain_Day-4

Video
1:40:10

Retail Domain_Day-1

Video
50:54

Retail Domain_Day-2

Video
1:1:59

Retail Domain_Day-3

Video
1:3:25

E-Commerce_Day-1

Video
2:2:21

E-Commerce_Day-2

Video
2:5:23

E-Commerce_Day-3

Video
2:6:34

Supply Chain_Day-1

Video
1:58:48

Supply Chain_Day-2

Video
2:2:3

Finance Domain_Day-1

Video
2:13:58

Finance Domain_Day-2

Video
2:12:40

Text Analysis (Sentiment Classification)

Video
2:4:51

Text Analysis -Day 2

Video
1:55:29

Finance Domain (ATM Transaction)

Video
1:50:26

Finance Domain (ATM Transaction)-2

Video
1:49:24

Data structure and algorithms

1. class -1

Video
1:030

2. Class-2

Video
2:28:26

3. class -3

Video
2:48:8

4. Class -4

Video
3:49:34

5. Class -5

Video
1:54:45

6. Class -6

Video
2:57:11

7. Class -7

Video
2:48:40

8. Class -8

Video
9:39

9. Class -9

Video
3:6:54

10. Class -10

Video
2:13:36

OOPs Class

Class_01

Video
1:45:35

Class_02

Video
1:48:30

Class_03

Video
2:4:21

Class_04

Video
2:12:20

Class_05

Video
1:55:38

Class_06

Video
1:16:47

Resume Session

1. 0-3 yrs of Exp.

Video
1:47:49

2. 8+ Yrs of Exp.

Video
2:025

3. 4 to 8 yrs of Exp.

Video
1:26:22

Adv. Data science with BFSI

1 Learning Materials

content

content

Course Instructor

tutor image

Abhishek Gupta

715 Courses   •   221267 Students